Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: a multifactorial process.

نویسندگان

  • Mehrdad Abedi
  • Deborah A Greer
  • Gerald A Colvin
  • Delia A Demers
  • Mark S Dooner
  • Jasha A Harpel
  • Heinz-Ulrich Weier
  • Jean-Francois Lambert
  • P J Quesenberry
چکیده

OBJECTIVE Murine marrow cells are capable of repopulating skeletal muscle fibers. A point of concern has been the "robustness" of such conversions. We have investigated the impact of type of cell delivery, muscle injury, nature of delivered cell, and stem cell mobilizations on marrow-to-muscle conversion. METHODS We transplanted green fluorescence protein (GFP)-transgenic marrow into irradiated C57BL/6 mice and then injured anterior tibialis muscle by cardiotoxin. One month after injury, sections were analyzed by standard and deconvolutional microscopy for expression of muscle and hematopoietic markers. RESULTS Irradiation was essential to conversion, although whether by injury or induction of chimerism is not clear. Cardiotoxin- and, to a lesser extent, PBS-injected muscles showed significant number of GFP(+) muscle fibers, while uninjected muscles showed only rare GFP(+) cells. Marrow conversion to muscle was increased by two cycles of G-CSF mobilization and to a lesser extent by G-CSF and steel or GM-CSF. Transplantation of female GFP to male C57BL/6 and GFP to ROSA26 mice showed fusion of donor cells to recipient muscle. High numbers of donor-derived muscle colonies and up to 12% GFP(+) muscle cells were seen after mobilization or direct injection. These levels of donor muscle chimerism approach levels that could be clinically significant in developing strategies for the treatment of muscular dystrophies. CONCLUSION In summary, the conversion of marrow to skeletal muscle cells is based on cell fusion and is critically dependent on injury. This conversion is also numerically significant and increases with mobilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of bone marrow mesenchymal stem cells on recovery of skeletal muscle after neurotization surgery in rat

Objective(s): When the nerve is injured near its entrance to the muscle belly, we cannot perform conventional methods. One useful method in such a situation is neurotization surgery. In this study, Bone marrow mesenchymal stem cells (BMSCs) implanted into the paralyzed muscle after neurotization surgery. These cells can stimulate axon growth and motor endplate formation, also prevent muscle atr...

متن کامل

BIO treatment enhances rat marrow-derived mesenchymal stem cell in vitro proliferation and viability

Introduction: Previous investigations have indicated that the presence of BIO (6-Bromoindirubin-3-Oxime) in medium of some cell culture enhances the cell proliferation and viability. The aim of the present study was to investigate the BIO effects on in vitro expansion of rat marrow-derived mesenchymal stem cells (MSCs) culture. Methods: In the present experimental study, bone marrow cells from ...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

Effect of daunorubicin drug with and without cimetidine on the nucleated cells of bone marrow of balb/c mouse

Introduction: Hematopoiesis is an on going process mammalian marrow system. A few cells from the nucleated cells of bone marrow are hematopoietic cells which include primary stem cells, precursor cells and progenitor cells. Primary stem cells and progenitor cells are able to produce colonies in culture medium (CFU-C) and irradiated mouse spleen (CFU-S). A hematopoietic cell is alive and act...

متن کامل

Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental hematology

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2004